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INTRODUCTION

Avec le contrôle et l’éviction de la porte d’entrée, l’antibiothérapie représente 
toujours la pierre angulaire du traitement curatif des infections bactériennes 
tant communautaires que nosocomiales. Or, le problème émergent de la 
(multi)résistance bactérienne aux antibiotiques et la diminution du nombre de 
nouveaux antibiotiques développés chaque année font craindre une diminution 
future de l’efficacité clinique des antibiotiques. En réponse à ce problème 
majeur de santé publique, des stratégies complémentaires ou alternatives à 
l’administration d’antibiotiques sont développées pour le traitement préventif et 
curatif des infections bactériennes [1-4]. Ces nouvelles approches comprennent 
la lutte contre les facteurs de virulence (toxines, biofilm), la vaccination et la 
modulation de l’immunité de l’hôte, la protection ou la régulation du microbiote 
et la phagothérapie.

Cette revue a pour but de présenter les principes, les avantages et les limites 
de ces différentes pistes thérapeutiques.

1. LUTTE CONTRE LES FACTEURS DE VIRULENCE

Les bactéries pathogènes produisent des facteurs de virulence, c’est-à-
dire des molécules leur permettant de ne pas être détruites par les systèmes 
de défense de l’hôte, de se déplacer, d’envahir des tissus profonds et/ou de 
détruire les cellules de l’hôte.
1.1.	AGENTS	DIRIGÉS	CONTRE	LES	TOXINES	ET	LES	SYSTÈMES	DE	SÉCRÉ-

TION BACTÉRIENS
Ces molécules peuvent être soit des anticorps, soit des inhibiteurs 

chimiques. Parmi les bactéries qui concernent l’anesthésiste-réanimateur, 
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l’action de ces molécules a principalement été évaluée contre Staphylococcus	
aureus, Pseudomonas aeruginosa ou	Clostridium	difficile.

On sait que la présence de la leucocidine de Panton-Valentine (LPV) chez 
S. aureus est associée à une mortalité élevée et que l’administration de ß-lac-
tamine seule peut augmenter la sécrétion de cette toxine [5]. Chez des patients 
hospitalisés en réanimation pour pneumonie nécrosante à S. aureus possédant 
la LPV, une amélioration clinique a été notée lorsque, en plus de l’antibiothé-
rapie classique, cette toxine était inhibée par l’administration concomitante de 
clindamycine, de linézolide ou d’immunoglobulines [6]. Plus récemment, Rouha 
et al. ont identifié un anticorps humain monoclonal capable d’inhiber l’alpha-
hémolysine et 4 leucocidines de S. aureus, dont la LPV [7].

Les systèmes de sécrétion de type III permettent à de nombreuses bactéries 
à Gram négatif (BGN) dont P. aeruginosa d’injecter directement leurs toxines 
dans les cellules humaines, comme le ferait une seringue. Alors que les toxines 
injectées sont très variables, les composants des appareils de sécrétion de 
type III sont, de manière intéressante, relativement conservés entre espèces. 
L’élément PcrV est notamment une cible de choix puisqu’il est situé à l’extrémité 
de la « seringue » et permet l’insertion du pore de translocation sur la membrane 
de la cellule humaine visée. Cette protéine PcrV est la cible de deux anticorps, 
KB001 (KaloBios) et MEDI3902 (AstraZeneca). KB001 a été évalué dans deux 
études cliniques [8, 9], dont un essai randomisé contrôlé réalisé chez 35 patients 
ventilés mécaniquement et colonisés à P. aeruginosa. Cet essai a surtout 
montré la bonne tolérance de KB001, ainsi qu’une tendance vers moins de 
développement de pneumonies acquises sous ventilation mécanique (PAVM) 
à P. aeruginosa [9]. Les études concernant cette molécule, et notamment son 
efficacité, n’ont malheureusement pas été poursuivies. Un essai de phase I 
évaluant la tolérance de MEDI3902 chez des volontaires sains vient d’achever 
son recrutement (NCT02255760, résultats non publiés).

C.	difficile est un bacille à Gram positif anaérobie à l’origine de diarrhées 
post-antibiothérapie pouvant survenir par épidémies, associées à une morbi-
mortalité importante, et souvent récurrentes. C.	difficile est la première cause 
d’infections associées aux soins aux USA [10]. La pathogénie de cette bactérie 
implique la sécrétion des toxines A et B. Dans 2 essais indépendants, prospectifs, 
randomisés contre placebo (MODIFY I et II), l’administration d’un anticorps 
monoclonal humain (bezlotoxumab, ZINPLAVA™) dirigé contre la toxine B a 
démontré une diminution significative du taux de récidives de colite à C.	difficile 

(17 % vs 28 % dans MODIFY I et 16 % vs 26 % dans MODIFY II, p < 0,001) chez 
des patients adultes traités pour un premier épisode ou une récidive de colite à 
ce germe [11]. La Food and Drug Administration (FDA) a approuvé l’utilisation 
de cette molécule pour la prévention de la récidive de colite à C.	difficile.
1.2. AGENTS DIRIGÉS CONTRE L’ADHÉRENCE/INVASION BACTÉRIENNE 

ET LE BIOFILM
Les bactéries utilisent des éléments situés à leur surface (pili, fimbriae, 

adhésines) pour adhérer et envahir les cellules hôtes. C’est notamment un facteur 
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de virulence important pour E. coli uropathogène, principal agent responsable 
d’infections urinaires. De petites molécules ont été développées afin d’interférer 
avec les liaisons entre fimbriae et cellules épithéliales et semblent montrer une 
efficacité sur des modèles animaux [12, 13]. Les proanthocyanidines sont des 
flavonoïdes présents dans de nombreux végétaux comme la canneberge avec 
des propriétés anti-adhésives connues, par exemple contre l’adhérence d’E. coli 
à l’urothélium [14]. Une étude expérimentale de Margetis et al [15] a montré, ex 
vivo et in vivo chez la souris, un effet inhibiteur concentration-dépendant des 
proanthocyanidines de canneberge sur la croissance bactérienne ainsi qu’une 
inhibition de l’adhésion bactérienne sur les cellules épithéliales, avec un effet 
bénéfique sur la mortalité.

La constitution d’un biofilm par les bactéries, sur des surfaces inertes 
(cathéters, prothèses, sonde vésicale) ou sur des tissus (valves cardiaques), 
représente un mécanisme physiopathologique important dans le développement, 
la persistance et la récurrence des infections. C’est aussi un challenge théra-
peutique puisque le biofilm constitue une matrice extra-cellulaire qui englobe 
et protège les bactéries par rapport aux défenses anti-infectieuses de l’hôte et 
aux antibiotiques. C’est une problématique d’importance, notamment pour les 
patients porteurs de cathéters de longue durée. De manière intéressante, l’utili-
sation de verrou hépariné pour assurer le maintien de la perméabilité du cathéter 
a été associée à une augmentation de la formation du biofilm par S. aureus [16]. 
Différentes méthodes de lutte contre le biofilm ont été décrites : l’utilisation de 
cathéters réalisés à partir de nouveaux biomatériaux (polysulfobétaine, polymère 
de méthylcellulose aux propriétés anti-adhésion « glycocalyx-like ») [17, 18], 
d’un verrou basé sur des dérivés nitrés (sans antibiotique ni héparine) [19] ou 
d’autres substances donneuses de NO [20]. Leurs bénéfices en termes de 
devenir clinique du patient restent à être démontrés dans des études humaines 
et/ou de meilleure qualité.
1.3. AGENTS DIRIGÉS CONTRE LES VOIES DE COMMUNICATION BACTÉ-

RIENNE	(QUORUM	SENSING)
Le quorum sensing (QS) est un système de communication entre bactéries 

(aussi bien à Gram positif qu’à Gram négatif) qui leur permet de réagir en tant 
que groupe à des changements dans leur environnement. Le QS implique la 
production, la détection et la réponse à des signaux extra-cellulaires appelés 
« auto-inducteurs ». Après un certain degré de croissance bactérienne, ces 
signaux sont produits et conduisent à une coordination dans l’expression des 
gènes, notamment ceux codant pour des facteurs de virulence (formation de 
biofilm, etc…) [21, 22]. L’ensemble des mécanismes permettant d’interférer 
avec le QS sont désignés par le terme Quorum Quenching (QQ). Les inhibiteurs 
du QS les plus étudiés sont les furanones halogénés et certains antibiotiques, 
principalement les macrolides [23]. Par exemple, l’azithromycine n’a pas d’effet 
bactéricide ou bactériostatique sur P. aeruginosa, mais inhibe le QS in vitro. 
L’effet de l’azithromycine i.v. sur la prévention des PAVM à P. aeruginosa a été 
étudié dans un essai contrôlé randomisé (versus placebo), en double aveugle, 
sur 92 patients ventilés mécaniquement et colonisés par P. aeruginosa [24]. 
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L’administration d’azithromycine i.v. n’était pas associée à une diminution 
significative du taux de PAVM à P. aeruginosa (critère de jugement principal). 
Cette étude n’a pu être poursuivie jusqu’au nombre d’inclusions initialement 
prévues et présente donc un manque de puissance. L’inhibition du QS a aussi été 
utilisée dans les dispositifs médicaux, comme l’utilisation de cathéters veineux 
imprégnés en 5-FU (agent anticancéreux qui inhibe la virulence de P. aeruginosa 
in vitro) chez des patients de réanimation [25], sans que cette pratique ne se 
soit diffusée depuis.

2.	 MODULATION	DE	L’IMMUNITÉ	DE	L’HÔTE	ET	VACCINATION
2.1. THÉRAPEUTIQUES CIBLANT LES RÉCEPTEURS DE L’IMMUNITÉ INNÉE 

DE L’HÔTE
Les cellules de l’immunité innée (polynucléaires neutrophiles, monocytes/

macrophages) possèdent des récepteurs de reconnaissance de pathogènes 
(récepteurs de reconnaissance de motifs moléculaires) comme les Toll-like 
receptors (TLR) ou les Nod-like receptors. Lorsque ces récepteurs se lient à 
des « motifs moléculaires associés aux pathogènes » (Pathogen Associated 
Molecular Patterns = PAMPs), différentes voies de signalisation cellulaire 
sont activées et aboutissent à la réponse immunitaire innée. Dans le cas des 
TLR, deux moyens de moduler les réponses médiées par ces récepteurs sont 
possibles : soit en utilisant des agonistes, qui vont augmenter la réponse 
inflammatoire, soit en utilisant des antagonistes qui vont au contraire la freiner. 
La réponse pro-inflammatoire peut être protectrice et conduire à l’élimination du 
pathogène. Elle peut aussi être délétère et entraîner des défaillances d’organes 
chez l’hôte si elle est excessive. Les études précliniques réalisées sur modèle 
murin ont montré des résultats encourageants liés à l’administration préventive 
d’agonistes des TLR (lipopolysaccharide (= LPS), flagelline) en termes de 
protection contre les infections à Streptococcus pneumoniae, P. aeruginosa 
ou E. faecium résistant à la vancomycine [26, 27]. A notre connaissance, ces 
effets n’ont pas été confirmés chez l’être humain. L’utilisation d’antagonistes 
des TLR a été évaluée chez des patients en sepsis, sans effet positif démontré 
en termes de diminution de la mortalité [28, 29].
2.2. PEPTIDES ANTIMICROBIENS

Tous les organismes pluricellulaires (comme les animaux), qui interagissent 
de leur naissance à leur mort avec des micro-organismes comme les bactéries, 
produisent naturellement des peptides antimicrobiens [30]. Ces peptides anti-
microbiens naturels ont servi de modèles pour le développement de peptides 
antimicrobiens de synthèse qui agissent le plus souvent par immunomodulation 
plutôt que par action antibactérienne directe. Ici encore, ces molécules ont 
principalement été évaluées sur des modèles animaux d’infection avec des 
résultats encourageants qui doivent être confirmés chez l’Homme [31].
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2.3. ADMINISTRATION D’ANTICORPS
L’utilisation d’anticorps capables de se lier aux bactéries et de neutraliser 

celles-ci ou leurs facteurs de virulence a été évaluée chez l’animal et chez 
l’Homme, comme nous l’avons vu plus haut avec le bezlotoxumab dirigé contre 
la toxine B de C.	difficile. Un essai récent prospectif randomisé en double-
aveugle (versus placebo) a évalué l’intérêt de l’administration de trimoduline, 
une préparation d’anticorps polyclonaux contenant des IgG, IgM et IgA, chez 
160 patients ayant une pneumopathie communautaire nécessitant une ventilation 
mécanique. Il n’y avait pas de différence significative en termes de nombre de 
jours sans ventilation mécanique, même si une analyse post-hoc des résultats 
semblait montrer un effet bénéfique de la trimoduline dans un sous-groupe 
de patients avec C-Reactive Protéine (CRP) élevée et IgM bas. Les auteurs 
proposent d’utiliser ces marqueurs pour cibler une population plus susceptible 
de bénéficier de l’administration de trimoduline pour un éventuel essai clinique 
de phase III ultérieur [32].
2.4. VACCINATION

L’utilisation de la vaccination, qui reste toujours un outil majeur de lutte contre 
les infections, est une piste de plus en plus envisagée pour lutter contre les infec-
tions associées aux soins (IAS). Les principaux vaccins actuellement en cours 
de développement sont dirigés contre S.	aureus,	C.	difficile	et P. aeruginosa [33]. 
S. aureus est une des principales bactéries responsables d’IAS, notamment de 
bactériémies ou d’infections de matériel. Deux vaccins anti-S. aureus ont été 
étudiés chez l’Homme : StaphVAX, qui n’a pas permis de diminuer l’incidence 
des bactériémies à S. aureus dans 2 études multicentriques chez plus de 
5 000 patients hémodialysés chroniques [34, 35] et V710, dont l’utilisation en 
préopératoire de chirurgie cardiaque (versus placebo) n’était pas associée à 
moins d’infections à S. aureus et, surtout, était associée à une mortalité plus 
élevée des patients qui développaient une infection à S. aureus [36]. Les vaccins 
contre C.	difficile les plus avancés visent à développer une réponse immune 
contre les toxines A et B de cette bactérie, afin d’empêcher le développement la 
maladie. Plusieurs essais cliniques de phase II et III sont en cours afin d’évaluer 
leur efficacité. Concernant P. aeruginosa, un essai prospectif randomisé versus 
placebo a été réalisé chez 800 patients de réanimation ventilés mécaniquement 
(52 centres, 6 pays européens) et n’a pas confirmé les effets bénéfiques sur la 
mortalité initialement décrits avec le vaccin VLA43 [37]. Les difficultés liées à 
cette stratégie de vaccination sont : 
• La nécessité de cibler une espèce bactérienne contre laquelle vacciner le 

patient.
• La difficulté d’obtenir un vaccin efficace contre l’ensemble des sérotypes de 

l’espèce bactérienne visée (ceci implique de cibler des antigènes relativement 
conservés au sein de cette espèce).

• Le temps plus ou moins long entre l’injection du vaccin et le développement 
d’anticorps efficaces par l’hôte.
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3. PROTECTION ET MODULATION DU MICROBIOTE INTESTINAL

De manière générale, les interventions visant à moduler le microbiote ont 
pour but de diminuer la proportion de micro-organismes pathogènes (stratégie 
de décolonisation/décontamination), ou d’augmenter/restaurer la proportion 
de micro-organismes bénéfiques. De nombreuses études et méta-analyses 
ont ainsi évalué l’efficacité de la décontamination digestive sélective (DDS) en 
réanimation et montré son efficacité sur la prévention de la survenue de certaines 
infections nosocomiales et sur la mortalité. La généralisation de l’application 
de la DDS reste cependant limitée, notamment par la crainte de l’émergence 
de bactéries multi-résistantes [38]. Les différentes méthodes de restauration 
d’un microbiote bénéfique reposent sur l’utilisation de probiotiques (micro-
organismes vivants, bactéries ou levures, possédant un effet bénéfique sur la 
flore intestinale et donc sur l’hôte, ex : Lactobacillus,	Saccharomyces	boulardii), 
prébiotiques (substances non vivantes possédant un effet bénéfique sur la flore, 
ex : lactulose utilisé chez le cirrhotique) ou de symbiotiques (association de 
probiotiques et prébiotiques). L’efficacité de ces molécules en réanimation a été 
évaluée dans une méta-analyse récente rassemblant les données de 30 études 
et presque 3 000 patients [39]. L’utilisation de probiotiques était associée à 
une diminution significative du taux global d’infections (Risque Relatif = 0,8, 
IC95 : 0,7-0,9, p = 0,009), et de PAVM en particulier (RR = 0,7, IC95 : 0,6-0,9, 
p = 0,002). L’absence d’effet sur la mortalité et la durée de séjour, une importante 
hétérogénéité des molécules et des doses administrées et de probables biais 
de publication limitent la force des recommandations concernant l’utilisation 
clinique de ces molécules. De manière intéressante, ces molécules ont aussi 
été étudiées dans le contexte péri-opératoire dans le but de prévenir les com-
plications post-chirurgicales, notamment les infections de site opératoire (ISO). 
Une méta-analyse récente, rassemblant les données de 31 études et environ 
3 000 patients, a montré que l’utilisation de symbiotiques était plus efficace que 
les prébiotiques ou probiotiques seuls, et permettait de réduire les taux d’ISO 
(RR = 0,3 ; IC95 : 0,1-0,6), de pneumonies (RR = 0,3 ; IC95 : 0,1-0,9), de sepsis 
(RR = 0,1 ; IC95 : 0-0,9) ainsi que les durées de séjour et d’antibiothérapie [40]. 
Les limites de cette méta-analyse sont les mêmes que celles concernant la 
méta-analyse citée ci-dessus [39].

Toute antibiothérapie systémique peut avoir des conséquences délétères sur 
le microbiote intestinal, comme le développement d’une infection à C.	difficile 

ou la sélection de bactéries multirésistantes. Différentes stratégies ont été 
développées pour prévenir l’altération du microbiote intestinal (dysbiose) lors 
d’une antibiothérapie. L’administration orale d’une ß-lactamase de manière 
concomitante à l’administration intraveineuse d’une ß-lactamine permettrait 
d’inactiver l’excès de ß-lactamine excrété dans l’intestin et de prévenir la 
survenue de la dysbiose. Ceci pourrait être particulièrement intéressant pour la 
ceftriaxone, dont on sait que plus de la moitié de la dose i.v. est excrétée dans 
la bile et arrive dans l’intestin sous forme active [41]. Dans 2 essais cliniques 
multicentriques et randomisés de phase 2a, la co-administration de SYN-004 
(ribaxamase), une ß-lactamase de classe A, a par exemple permis de dégrader 
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entièrement la ceftriaxone dans le tube digestif de 26 patients sans modifier la 
pharmacocinétique (PK) plasmatique de cet antibiotique [41]. L’administration de 
DAV132, une molécule de charbon activé adsorbant non-spécifique, a été éva-
luée dans un essai randomisé chez 28 volontaires sains traités par moxifloxacine. 
DAV132 permettait de diminuer de 99 % la quantité de moxifloxacine excrétée 
dans les selles (sans en altérer la PK plasmatique) et de préserver la richesse 
du microbiote intestinal. Une analyse complémentaire ex-vivo permettait de 
démontrer que DAV132 peut absorber la plupart des antibiotiques couramment 
utilisés en clinique (pénicillines, céphalosporines, carbapénèmes) [42]. 

Dans le cas des infections récidivantes à C.	difficile (> 3 épisodes), la trans-
plantation de microbiote fécal (TMF) est la thérapeutique la plus efficace, comme 
l’ont montré plusieurs études prospectives contrôlées randomisées [43, 44]. 
Pour cette indication, la TMF est ainsi recommandée avec un grade A1 dans les 
dernières recommandations européennes [45], même si les modalités exactes 
de son administration restent à standardiser [46]. 

4.	 MICROBES	VS	MICROBES	:	PHAGOTHÉRAPIE

Les bactériophages sont des virus capables de détruire les bactéries, dont 
la première utilisation date d’avant la découverte des antibiotiques. Avec l’essor 
de l’antibiothérapie, l’usage thérapeutique des phages est resté très limité dans 
les pays occidentaux alors qu’il s’est poursuivi dans les pays de l’ex-Europe 
de l’Est. Depuis quelques années, il existe un certain regain d’intérêt pour ce 
traitement, notamment pour les infections à bactéries multi- ou totorésistantes. 
Néanmoins, les avantages théoriques de la phagothérapie (spécificité d’action 
contre certaines espèces bactériennes voire contre certaines souches précises, 
bactéricidie rapide, pas d’effet sur les cellules humaines ni sur le microbiote de 
l’hôte) sont contrebalancés par d’importantes limites (nécessité de conduire/
acheminer le phage sur le site infecté, donc avec une application préférentiel-
lement locale, inefficacité sur les bactéries intracellulaires, manque de cadre 
réglementaire) qui rendent difficiles son application en pratique clinique [47]. 

CONCLUSION

De nombreuses pistes thérapeutiques sont en cours de développement pour 
le traitement préventif ou curatif des infections bactériennes, en alternative ou en 
complément du traitement antibiotique classique. Peu nombreuses sont celles 
qui sont d’ores et déjà utilisables en pratique clinique : il s’agit essentiellement 
des traitements basés sur la modulation et la protection du microbiote intestinal 
(DDS, probiotiques/prébiotiques/symbiotiques, transplantation du microbiote 
fécal). Le développement de ces molécules, dont la plupart sont encore en 
phase préclinique, nécessite une approche transversale reliant recherche 
scientifique, industrie et médecine avec un investissement important en coût et 
en temps. Il apparaît donc une nouvelle fois primordial de préserver l’efficacité 
des antibiotiques en les utilisant à bon escient [48].
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